3. PERBEDAAN BJT dan FET
Transistor jenis BJT (NPN dan PNP) dan UJT (FET dan MOSFET) memiliki cara kerja yang sama, namun dengan karakteristik yang berbeda. Berikut ini beberapa perbedaan antara Transistor BJT dan UJT (FET).
- Konversi: Transistor BJT mengkonversi arus menjadi arus, FET mengkonversi tegangan menjadi arus.
- Arus input: BJT membutuhkan arus input, FET tidak membutuhkan arus input.
- Input/output: Hubungan input/output BJT adalah linear direpresentasikan oleh sebuah garis lurus, namun hubungan input/output sebuah FET tidak linear untuk sinyal-sinyal besar (bertegangan tinggi). Hal ini dapat mengakibatkan terjadinya distorsi pada sinyal-sinyal besar yang diumpankan ke sebuah FET.
- Kecepatan: FET dapat melaksanakan proses pensaklaran secara lebih cepat dibandingkan BJT, namun demikian kedua jenis transistor ini dirasa cukup cepat untuk memenuhi kebutuhan sebagian besar aplikasi elektronik.
- Tegangan input: sebuah FET menjadi aktif ketika tegangan gate-sourcenya melampaui suatu tegangan ambang. Tegangan gate dapat memiliki nilai yang berada dalam kisaran antara tegangan ambang dan tegangan sumber, ketika FET dalam keadaan aktif. Tegangan basis-emitor BJT akan selalu mendekati nilai 0,7 V, ketika BJT dalam keadaan aktif, terlepas dari berapa besar arus inputnya.
- Resistor input: sebuah FET tidak membutuhkan sebuah resistor di depan terminal gatenya. Hal ini dapat menjadikan rangkaian yang bersangkutan jauh lebih sederhana.
- Tahanan output: kebanyakan FET memiliki tahanan yang sangat rendah ketika berada dalam keadaan aktif, biasanya kurang dari 1 Ohm. Hal ini membuat komponen-komponen ini sangat cocok untuk digunakan dalam rangkaian saklar transistor.
STRUKTUR FET
Kalau diperhatikan dari struktur keluarga transistor. FET berbeda dengan transistor bipolar (BJT) karena bukan pertemuan dari 3 lapis seperti layaknya diode atau Bipolar junction Transistor, FET merupakan uni polar.
Gambar 4. a. Struktur FET b. Juction FET
Pada gambar 4.a menunjukkan struktur suatu FET saluran N. FET ini terdiri dari batang semi konduktor type N yang pada kedua sisinya diapit oleh bahan semi konduktor type P. FET memiliki 3 elektroda, yakni; Source (S), Gate (G), dan Drain (D). Antara (G) dan (S) dipasang tegangan UGG yang merupakan reverse bias bagi gate (G). Karena dioda antara (G) dan (S) mengalami reverse bias, maka timbullah Depletion Layer pada junction (Gambar 4.b), supaya terjadi aliran antara (S) dan (D), maka antara kedua elektroda ini dipasang sumber tegangan (UDD). Besar kecilnya arus yang mengalir tergantung dari lebarnya Depletion Layer tadi. Jika UGG besar, Depletion Layer akan menjadi sedemikian lebarnya sehingga hampir menutup saluran antara (D) dan (S). Karena pada Depletion Layer tidak ada pembawa muatan, berarti bahwa jumlah pembawa muatan pada saluran menjadi kecil. Jika UGG kecil, Depletion Layer cukup tipis dan saluran antara (S) dan (D) cukup lebar, dengan demikian arus yang mengalir cukup besar. Jadi tegangan gate menentukan besarnya arus yang mengalir antara (D - S). Karena G dalam kondisi reverse bias, arus (G) dianggap sama dengan nol.
Terminal tempat pembawa muatan mayoritas masuk ke kanal untuk menyediakan arus melalui kanal. Drain adalah terminal arus meninggalkan kanal. Gate adalah elektroda yang mengontrol konduktansi antara Source dan Drain. Sinyal input diberikan pada terminal Drain. Sedangkan substrate atau bulk umumnya dihubungkan dengan source. Material pada substrate biasanya netral atau di dope sedikit.
Umumnya sinyal input diberikan pada terminal Gate. Dalam rangkaian input, terminal Gate dan kanal bertindak seolah-olah bagai kapasitor plat sejajar, dan konduktivitas kanal dapat diubah oleh tegangan Gate terhadap Source. Untuk kanal-n, tegangan positif pada Gate menginduksi muatan negatif pada kanal sehingga ada aliran elektron dari Source ke Drain.
4. SIFAT DASAR FET
Untuk mengetahui sifat dasar FET dibutuhkan rangkaian penguji FET seperti yang ditunjukkan pada gambar 5, pada kaki gate di berikan tegangan yang dapat diatur tegangannya mulai 0 V sampai ke minus (- V/ bias negatif), sedangkan pada kaki D-S diberikan supply positif. Pada gambar 6 menunjukkan bahwa makin negatif tegangan Gate-Source UGS, maka makin kecil pula arus Drain ID. Pada kondisi normal JFET selalu bekerja pada bagian karakteristik linier datar, atau dengan kata lain JFET dioperasikan pada tegangan Drain yang lebih besar dari tegangan knee K., tetapi lebih kecil dari tegangan breakdown-nya.
Gambar 5. Rangkaian pengukuran kurva JFET
Gambar 6. Kurva Karakteristik JFET
Lihat Gambar 6, UDS harus dibuat lebih besar dari 4 Volt tetapi lebih kecil dari 30 V. Dengan demikian UGS harus letakkan antara ( 0 s/d 4V ). Tegangan knee untuk lengkung karakteristik yang paling atas disebut pinch off voltage (Up), jadi bila pada lembar data tertulis Up=4 Volt, JFET tersebut harus dioperasikan dengan tegangan UDS yang lebih besar dari 4 Volt.
Dari gambar kurva, dapat kita lihat bahwa pada tegangan UGS= -4 V arus drain hampir = 0. Nilai UGS yang menyebabkan ID = 0 ini disebut Gate Source Cut Off Voltage (UGS = Off). Up dan UGS (off) memiliki hubungan penting yaitu nilai mutlak Up = nilai mutlak UGS (off) hanya tandanya yang berbeda; Up = 4 V UGS off = -4 V.
Hal ini berlaku untuk semua JFET dan harus diingat bahwa pada lembaran data JFET hanya akan disebutkan nilai (UGS off) saja. Lengkung karakteristik yang paling atas dibuat dengan tegangan gate = 0, keadaan sama dengan keadaan dimana gate dihubung singkat dengan source. Arus drain hampir datar dan dianggap sama, walau tegangan drain diubah-ubah dan pada lembar data arus ini disebut IDSS. Pada gambar kurva tampak bahwa jarak antara garis-garis mendatar itu tidak sama meskipun selisih UGS untuk tiap-tiap garis tetap 1 Volt.
0 komentar:
Posting Komentar